7 research outputs found

    Effects of Air Pollution Control on Climate

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles of common air pollutants such as CO, NOx and VOCs, and of the climatically important methane gas (CH4) and sulfate aerosols, both involve the fast photochemistry of the hydroxyl free radical (OH). Thus policies designed to address air pollution may impact climate and vice versa. We present calculations using a model coupling economics, atmospheric chemistry, climate and ecosystems to illustrate some effects of air pollution policy alone on global warming. We consider caps on emissions of NOx, CO, volatile organic carbon, and SOx both individually and combined in two ways. These caps can lower ozone causing less warming, lower sulfate aerosols yielding more warming, lower OH and thus increase CH4 giving more warming, and finally, allow more carbon uptake by ecosystems leading to less warming. Overall, these effects significantly offset each other suggesting that air pollution policy has a relatively small net effect on the global mean surface temperature and sea level rise. However, our study does not account for the effects of air pollution policies on overall demand for fossil fuels and on the choice of fuels (coal, oil, gas), nor have we considered the effects of caps on black carbon or organic carbon aerosols on climate. These effects, if included, could lead to more substantial impacts of capping pollutant emissions on global temperature and sea level than concluded here. Caps on aerosols in general could also yield impacts on other important aspects of climate beyond those addressed here, such as the regional patterns of cloudiness and precipitation.This research was supported by the U.S Department of Energy, U.S. National Science Foundation, and the Industry Sponsors of the MIT Joint Program on the Science and Policy of Global Change: Alstom Power (France), American Electric Power (USA), BP p.l.c. (UK/USA), ChevronTexaco Corporation (USA), DaimlerChrysler AG (Germany), Duke Energy (USA), J-Power (Electric Power Development Co., Ltd.) (Japan), Electric Power Research Institute (USA), Electricité de France, ExxonMobil Corporation (USA), Ford Motor Company (USA), General Motors (USA), Mirant (USA), Murphy Oil Corporation (USA), Oglethorpe Power Corporation (USA), RWE/Rheinbraun (Germany), Shell International Petroleum (Netherlands/UK), Statoil (Norway), Tennessee Valley Authority (USA), Tokyo Electric Power Company (Japan), TotalFinaElf (France), Vetlesen Foundation (USA)

    Unintended Environmental Consequences of a Global Biofuels Program

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but little research has been done on the consequences of an aggressive global biofuels program with advanced technologies using cellulosic feedstocks. Here, with simulation modeling, we explore two scenarios for cellulosic biofuels production and find that both could contribute substantially to future global-scale energy needs, but with significant unintended environmental consequences. As the land supply is squeezed to make way for vast areas of biofuels crops, the global landscape is defined by either the clearing of large swathes of natural forest, or the intensification of agricultural operations worldwide. The greenhouse gas implications of land-use conversion differ substantially between the two scenarios, but in both, numerous biodiversity hotspots suffer from serious habitat loss. Cellulosic biofuels may yet serve as a crucial wedge in the solution to the climate change problem, but must be deployed with caution so as not to jeopardize biodiversity, compromise ecosystems services, or undermine climate policy.This study received funding from the MIT Joint Program on the Science and Policy of Global Change, which is supported by a onsortium of government, industry and foundation sponsors

    Past and Future Effects of Ozone on Net Primary Production and Carbon Sequestration Using a Global Biogeochemical Model

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860-1995) show the largest damages occur in the eastern U.S., Europe, and eastern China, with reductions in Net Primary Production (NPP) of over 70% for some locations. Scenarios through the year 2100 using the MIT Integrated Global Systems Model (IGSM) show potentially greater negative effects in the future. In the worst-case scenario, the current land carbon sink in China could become a carbon source. Reduced crop yields resulting from ozone damage are potentially large but can be mitigated by controlling emissions of ozone precursors. Failure to consider ozone damages to vegetation would by itself raise the costs over the next century of stabilizing atmospheric concentrations of CO2 by 3 to 18%. But, climate policy would also reduce ozone precursor emissions, and ozone, and these additional benefits are estimated to be between 4 and 21% of the cost of the climate policy. Tropospheric ozone effects on terrestrial ecosystems thus produce a surprisingly large feedback in estimating climate policy costs that, heretofore, has not been included in cost estimates.This study was funded by the Biocomplexity Program of the U.S. National Science Foundation (ATM-0120468), the Methods and Models for Integrated Assessment Program of the U.S. National Science Foundation (DEB-9711626) and the Earth Observing System Program of the U.S. National Aeronautics and Space Administration (NAG5-10135). We also received support from the federal and industrial sponsors of the MIT Joint Program on the Science and Policy of Global Change

    Probabilistic Forecast for 21st Century Climate Based on Uncertainties in Emissions (without Policy) and Climate Parameters

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).The MIT Integrated Global System Model is used to make probabilistic projections of climate change from 1861 to 2100. Since the model's first projections were published in 2003 substantial improvements have been made to the model and improved estimates of the probability distributions of uncertain input parameters have become available. The new projections are considerably warmer than the 2003 projections, e.g., the median surface warming in 2091 to 2100 is 5.1°C compared to 2.4°C in the earlier study. Many changes contribute to the stronger warming; among the more important ones are taking into account the cooling in the second half of the 20th century due to volcanic eruptions for input parameter estimation and a more sophisticated method for projecting GDP growth which eliminated many low emission scenarios. However, if recently published data, suggesting stronger 20th century ocean warming, are used to determine the input climate parameters, the median projected warning at the end of the 21st century is only 4.1°C. Nevertheless all our simulations have a very small probability of warming less than 2.4°C, the lower bound of the IPCC AR4 projected likely range for the A1FI scenario, which has forcing very similar to our median projection. The probability distribution for the surface warming produced by our analysis is more symmetric than the distribution assumed by the IPCC due to a different feedback between the climate and the carbon cycle, resulting from a different treatment of the carbon-nitrogen interaction in the terrestrial ecosystem.his work was supported in part by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-93ER61677, NSF, and by the MIT Joint Program on the Science and Policy of Global Change

    MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).The MIT Integrated Global System Model (IGSM) is designed for analyzing the global environmental changes that may result from anthropogenic causes, quantifying the uncertainties associated with the projected changes, and assessing the costs and environmental effectiveness of proposed policies to mitigate climate risk. This report documents Version 2 of the IGSM, which like the previous version, includes an economic model for analysis of greenhouse gas and aerosol precursor emissions and mitigation proposals, a coupled atmosphere-ocean-land surface model with interactive chemistry, and models of natural ecosystems. In this global framework the outputs of the combined anthropogenic and natural emissions models provide the driving forces for the coupled atmospheric chemistry and climate models. Climate model outputs then drive a terrestrial model predicting water and energy budgets, CO2, CH4, and N2O fluxes, and soil composition, which feed back to the coupled climate/chemistry model. The first version of the integrated framework (which we will term IGSM1) is described in Prinn et al. (1999) and in publications and Joint Program Reports and Technical Notes provided on the Program’s website (http://mit.edu/globalchange/). Subsequently, upgrades of component model capabilities have been achieved, allowing more comprehensive and realistic studies of global change. Highlights of these improvements include: a substantially improved economics model, needed to provide emissions projections and to assess an increasingly complex policy environment; a new global terrestrial model comprised of state-of-the-art biogeophysical, ecological and natural biogeochemical flux components, which provides an improved capacity to study consequences of hydrologic and ecologic change; the addition of a three-dimensional ocean representation, replacing the previous two-dimensional model, which allows examination of the global thermohaline circulation and its associated climate change impacts; the addition of an explicit oceanic carbon cycle including the impact of the biological pump; the addition of a new urban air pollution model enabling better treatments of human health and climate impacts; and the addition of greater flexibility for study of terrestrial ecosystem and urban pollution effects. This report documents the essential features of the new IGSM structure.This research was supported by the U.S Department of Energy, U.S. Environmental Protection Agency, U.S. National Science Foundation, U.S. National Aeronautics and Space Administration, U.S. National Oceanographic and Atmospheric Administration; and the Industry and Foundation Sponsors of the MIT Joint Program on the Science and Policy of Global Change: Alstom Power (France), American Electric Power (USA), BP p.l.c. (UK/USA), Chevron Corporation (USA), CONCAWE (Belgium), DaimlerChrysler AG (Germany), Duke Energy (USA), J-Power (Japan), Electric Power Research Institute (USA), Electricité de France, ExxonMobil Corporation (USA), Ford Motor Company (USA), General Motors (USA), Murphy Oil Corporation (USA), Oglethorpe Power Corporation (USA), RWE Power (Germany), Shell Petroleum (Netherlands/UK), Southern Company (USA), Statoil ASA (Norway), Tennessee Valley Authority (USA), Tokyo Electric Power Company (Japan), Total (France), G. Unger Vetlesen Foundation (USA)

    A Process-based Analysis of Methane Exchanges Between Alaskan Terrestrial Ecosystems and the Atmosphere

    No full text
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).We developed and used a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in Alaskan soils have changed over the past century in response to observed changes in the state’s climate and are likely to change with projected climate changes over this century. We estimate that the current net emissions of CH4 (emissions minus consumption) from Alaskan soils are about 3 Tg CH4 per year. We project that net CH4 emissions will almost double by the end of the century in response to high-latitude warming and associated climate changes. If CH4 emissions from soils of the pan-Arctic region respond to climate changes in the way we project for the Alaskan soils, the net increase in high latitude CH4 emissions could lead to a major positive feedback to the climate system.This work was supported by a NSF biocomplexity grant (ATM-0120468) and by the NASA Land Cover and Land Use Change Program (NAG5-6257)

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore